Analysis Qualifying Exam

January 2016
Please solve any 5 of the following 8 problems. Be sure to write clearly and give sufficient explanations. Solving more than 5 will not result in extra points.

Problem 1

(a) State the Monotone Convergence Theorem (MCT).
(b) State Fatou's Lemma.
(c) Use Fatou's Lemma to prove MCT.

Problem 2

Let $\left\{f_{n}\right\}_{n=1}^{\infty}, f$ be real-valued, Lebesgue measurable functions on the interval $[0,1]$. Prove, or provide a counterexample, to each of the following:
(a) If $f_{n} \rightarrow f$ in L^{1}, then $f_{n} \rightarrow f$ almost everywhere.
(b) If $f_{n} \rightarrow f$ in measure, then $f_{n} \rightarrow f$ in L^{1}.
(c) If $f_{n} \rightarrow f$ almost uniformly, then $f_{n} \rightarrow f$ almost everywhere. (Note: $f_{n} \rightarrow f$ almost uniformly if, for each $\epsilon>0$, there exists a set $E \subset[0,1]$ with $m(E)<\epsilon$ so that on $[0,1] \backslash E, f_{n} \rightarrow f$ uniformly.)

Problem 3

Let (X, \mathbb{A}, μ) be any sigma-finite measure space, and $\left\{A_{n}\right\}_{n=1}^{\infty}$ a sequence of measurable subsets of X. Show that:
(a) $\mu\left(\bigcup_{n} A_{n}\right) \leq \sum_{n} \mu\left(A_{n}\right)$.
(b) Let $\lim \sup A_{n}=\bigcap_{n \geq 1} \bigcup_{n \geq k} A_{n}$. Show that $\mu\left(\lim \sup A_{n}\right) \geq \lim \sup \mu\left(A_{n}\right)$.

Problem 4

(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be monotone increasing. Show that $\{x: f$ is not continuous at $x\}$ is countable.
(b) Show that if $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous, then f is of bounded variation.
(c) Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ which is monotone, of bounded variation, and not absolutely continuous. Justify!

Problem 5

Let \mathcal{H} be a Hilbert space with inner product (\cdot, \cdot). Prove the equivalence of the following properties of an orthonormal set $\left\{e_{k}\right\}_{k=1}$ in \mathcal{H}.
(i) Finite linear combinations of elements in $\left\{e_{k}\right\}_{k=1}$ are dense in \mathcal{H}.
(ii) If $f \in \mathcal{H}$ and $\left(f, e_{j}\right)=0$ for all j, then $f=0$.
(iii) If $f \in \mathcal{H}$, and $S_{N}(f)=\sum_{k=1}^{N} a_{k} e_{k}$, where $a_{k}=\left(f, e_{k}\right)$, then $S_{N}(f) \rightarrow f$ as $N \rightarrow \infty$ in the norm.
(iv) If $a_{k}=\left(f, e_{k}\right)$, then $\|f\|^{2}=\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}$.

Problem 6

(a) Define the orthogonal complement of a closed subspace of a Hilbert space.
(b) Prove that if S is a closed subspace of a Hilbert space \mathcal{H} then $\mathcal{H}=$ $S \bigoplus S^{\perp}, S^{\perp}$ denotes the orthogonal complement of S.
(c) If S is a subspace of a Hilbert space, is it true that $\left(S^{\perp}\right)^{\perp}=S$? Explain your answer.

Problem 7

Let \mathcal{H} be a Hilbert space with inner product (\cdot, \cdot). Let $T: \mathcal{H} \rightarrow \mathcal{H}$ be a bounded linear transformation. Prove that there exists a unique bounded linear transformation T^{*} on \mathcal{H} satisfying the following properties:
(i) $(T f, g)=\left(f, T^{*} g\right)$,
(ii) $\|T\|=\left\|T^{*}\right\|$, and
(iii) $\left(T^{*}\right)^{*}=T$.

Problem 8

All questions in this problem refer to Lebesgue measure.
(a) Is $L^{1}[0,1]$ contained in $L^{2}[0,1]$? Is $L^{2}[0,1]$ contained in $L^{1}[0,1]$? Justify!
(b) Is $L^{1}(0, \infty)$ contained in $L^{2}(0, \infty)$? Is $L^{2}(0, \infty)$ contained in $L^{1}(0, \infty)$? Justify!

